
Cloud First Application Development
Lunchtime Learning
December 8, 2016



2ISC’s Cloud First Program

Core Team
Application Design & Tools

Architecture, 
Infrastructure, & 

Migration
Integration

Communications & 
Engagement

Org 
Transformation 

Contracts & 
Procurement 

Security 

IAM

Funding & 
Finance

Client 
Engagement



3Integration: What (review)

 Two primary flavors
 Authentication and authorization

• PennKey/SAML
• PennGroups
• Penn Community

 Application-specific data
• Data into applications (think student enrollment data into Canvas, or 

employee job data into KnowledgeLink)
• Data out of applications, to other applications or to reporting and 

analytics environments like the Data Warehouse



4Integration: Current State
 Primarily point-to-point integration between 

SaaS, hosted, on-prem solutions and/or 
data warehouse

 Variety of technical approaches
 PL/SQL / Oracle tool approaches
 Java / FAST / other development environments
 Mule / ESB
 Penn Community APIs

 In most cases, dependent on highly-skilled 
developers



5Integration: Goals
 Toolset that will accommodate
 Use by business analysts / non-programmers
 Support Warehouse needs
 Support SaaS implementations with support for data to/from 

on-prem sources
 Support Penn-developed applications
 Support intra-application integrations (B2B / SaaS-to-SaaS)

 Processes and documentation on standard usage for 
the tools we acquire

 Integration Service supporting needs across ISC and the 
University’s schools and centers



6Integration: work to date
 Lessons learned (nothing surprising)
 Most vendors of SaaS solutions we use don’t have great API/web 

service platforms
 RFI/RFP content for Penn-wide consumption
 ETL tool acquisition effort in progress
 Currently working on live proof-of-concept use cases with two 

vendors
 Both vendor solutions meet multiple needs which may provide 

integration solution(s) for cloud-based services
 Research into other integration directions
 iPaaS, mPaaS, xXaas . . .
 This is a rapidly evolving product space; evaluation pending 

available expertise/resources



7Today

 Why change so much?
 What’s our project?
 Updates and demos
 Technology Stack: Matt Schleindl
 Behavior and Test Driven Development: Sam Donnelly
 Agile Development: Lisa McBriar



8What goes into an app

 A user interface
What people see



9But there’s a lot more lurking…

…Technical Debt



10What goes into an app

 Business logic
Actual value



11What goes into an app

 AuthN and AuthZ
Security



12What goes into an app

 Persistence and data stores
Making it all matter



13What goes into an app

 Integration points
Playing well with others



14What goes into an app

 Testing
Proof it’s doing what it should be



15What goes into an app

 A source repository
Storage for code and config



16What goes into an app

 Deployment pipeline
Getting built and available



17What goes into an app

 A platform
Somewhere to run and scale



18That’s a lot of stuff

 User interface
 Business logic
 Authentication and security
 Persistence and data stores
 Integration points
 Testing
 Source repository
 Deployment pipeline
 Platform



19Until now…

 We’ve built these ourselves
 And VERY successfully so!
 Like many, many others
 With full control
 Minimal short-term risk
 One language
 Unique ISC terminology

 As 3-tier monolithic apps
FAST framework and LCF



20And for each one of those pieces…
We have to:

 Provide help, support, and examples
 Train and gain mindshare
 Build components and modules
 Maintain security
 Incorporate new technologies
 Innovate and revamp
 React to industry changes
 Test and roll out



21We can’t keep up

A handful of architects…

… as only a part of their responsibilities



22

>



23Modern applications are…
 No longer self-

contained
 Think service areas
 Finance
 Student systems
 HR
 Research

 Composed of small 
pieces
 Reusable
 Built that way
 Deployed that way

Looser Coupling, More Flexible/Portable, More Complex Outer Architecture

Tighter Coupling, Less Flexible/Portable, Less Complex Outer Architecture

Monolithic App

Data Store

WAR/EAR

App Server

Microservices
Service A

Runtime

Data Store

Service B

Runtime

Data Store

Service C

Runtime

Data Store

Service D

Runtime

Data Store

Service E

Runtime

Data Store

Coarse-Grained Services

Data Store

App Server

Service
Domain

Service
Domain

Data
Store

Service
Domain

Runtime



24And each one is…
 Broken down even 

more
 An assembly of others’ 

work
 Open source
 Vendor products
 PaaS, SaaS, modules

 Small, disposable 
pieces

Automation

DevOps

Cloud-Ready/Cloud-Native PlatformAPI

Platform API

Policy
Management

Consumer
Identity
Provider

API Gateway

Build
Automation

Platform
Automation

Deployment
Automation

Adaptive
UI

Modularized
UI Components

Modularized
Client 
Application
Logic

JS
JS

JS
JS

Web Client

Persistence 
Services

Logging and
Diagnostics

Monitoring 
and Alerting

Security

Runtime
Management

Elastic
Scaling

?

Loosely Coupled
Services/Microservices Platform Capabilities

Service A

Instance 1

Instance n

Instance 1

Instance n

Service B

Load
Balancing



25The result is a conscious choice
 We built these ourselves
 And VERY successfully so!
 Like many, many others
 Full control
 Minimal short term risk
 One language
 Unique ISC terminology

 Someone else built it
 And VERY successfully so!
 Like many, many others
 Less control
 More short-term risk
 More languages
 Common terminology
 More time spent on the parts 

people see, not frameworks!!!



26Working this way also means…
 New processes
 Agile development
 Automated testing
 Service-oriented delivery model
 Microservices
 DevOps
 Architecture lifecycle management
 Open source engagement



27

So what is this project?



28First of all… who:

 Tim Bouffard, Application Architect
 Sam Donnelly, Sr. Application Developer
 Bryan Hopkins, Sr. IT Project Leader
 Anome Mammes, Sr. Application Developer
 Lisa McBriar, Sr. Business Systems Analyst
 Matt Schleindl, Application Architect



29So… what is this project?
 Agile development
 Automated testing
 Service-oriented 

architecture
 Microservices
 DevOps
 Architecture lifecycle 

management
 Open source engagement

 User interface
 Business logic
 Authentication and security
 Persistence
 API platform
 Testing
 Source repository
 Deployment pipeline
 Platform and scaling



30So… what is this project?



31Work iteratively

Pull from Backlog

• Based on ISC 
priorities

Define Criteria

• Identify 
methodology

• Identify 
technologies

Build and Evaluate

• Hands-on 
experience

• Assign scores

Pilot(s)

• Best-of-breed 
implementation

• Test 
assumptions



32

Yeah but where are we now?



33Yeah but where are we now?

https://www.isc.upenn.edu/cloud-first-application-delivery-refresh

https://www.isc.upenn.edu/cloud-first-application-delivery-refresh


34Results – UI Framework

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%
Accessibility

Community and
Modules

Cost

Design for Cloud

Development
Process and toolsKey Capabilities

Operations

Resource Pool

Stability/Viability

AngularJS + Bootstrap + Yeoman
generator
Possible Points

ReactJS + Bootstrap + Webpack +
Yeoman generator + Redux



35Results – Server Framework

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%
Community and Modules

Cost

Data Store
Compatibility/Security

Design for Cloud

DevelopmentProcess and
Tools

IAM

Integration

Operations

Resource pool

Stability/Viability

Python + Django

Possible Points

NodeJS + ExpressJS



36Results – Local Data Store

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%
Community and Modules

Cost

Design for Cloud

File Management

Key Capabilities

Operations

Resource pool

Stability/Viability

PostgreSQL
Possible Points
MongoDB



37Details! Decisions…

 User interface: AngularJS + Bootstrap + Webpack

 Business logic: Django REST Framework + Zappa

 AuthN and security: NodeJS + ExpressJS + Passport-SAML

 Persistence: PostgreSQL



38Details! Placeholders…

 API platform: AWS API Gateway
 Backend testing: Django TestCase + Mocha + Chai
 UI testing: Selenium + Karma + Gherkin
 Source repository: Gitlab
 Deployment pipeline: Jenkins
 Testing automation: Jenkins
 Platform and scaling: AWS ECS + AWS Lambda
 Agile development: JIRA Agile Plugin + Kanban



39Not even started…

 Service-oriented architecture
 Microservices
 DevOps
 Architecture lifecycle management
 Open source engagement
 More…



40

No more slides. Demos!
Technology Stack: Matt Schleindl

Behavior and Test Driven Development: Sam Donnelly
Agile Development: Lisa McBriar



41Comments/Questions

 Questions?
 Website: https://www.isc.upenn.edu/cloud-first
 Comments and suggestions for future topics can 

be sent to:
cloud-first@isc.upenn.edu

https://www.isc.upenn.edu/cloud-first
mailto:cloud-first@isc.upenn.edu

	Cloud First Application Development
	ISC’s Cloud First Program
	Integration: What (review)
	Integration: Current State
	Integration: Goals
	Integration: work to date
	Today
	What goes into an app
	But there’s a lot more lurking…
	What goes into an app
	What goes into an app
	What goes into an app
	What goes into an app
	What goes into an app
	What goes into an app
	What goes into an app
	What goes into an app
	That’s a lot of stuff
	Until now…
	And for each one of those pieces…
	We can’t keep up
	Slide Number 22
	Modern applications are…
	And each one is…
	The result is a conscious choice
	Working this way also means…
	Slide Number 27
	First of all… who:
	So… what is this project?
	So… what is this project?
	Work iteratively
	Slide Number 32
	Yeah but where are we now?
	Results – UI Framework
	Results – Server Framework
	Results – Local Data Store
	Details! Decisions…
	Details! Placeholders…
	Not even started…
	Slide Number 40
	Comments/Questions

